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Abstract-This investigation is concerned with the determination of effects of elastic deformation on the
stability of a rotating satellite composed of two elastically connected, inertially identical, unsymmetrical rigid
bodies. Following a stability analysis, examples are presented to demonstrate effects of elasticity on vehicle
motion, to illustrate various types of instability, and to point out that the performance of the system can be
highly sensitive to dimension and spin rate changes.

1. INTRODUCTION

MAN, in his quest for first-hand knowledge about the regions lying beyond the surface of
the Earth, has taken several major steps into extraterrestrial space. Manned vehicles have
orbited the Earth; communications vehicles have been sent to the Moon, as well as to the
planets Venus and Mars; and an intensive effort to place human beings on the Moon
is currently under way. Moreover, serious consideration is being given to schemes that
will permit men to live in space for prolonged periods of time.

To provide suitable living conditions in space, rotating vehicles (space stations) have
been proposed, the rotation being intended to generate an artificial gravitational environ
ment. The dimensions of a rotating space station are likely to be sizable [1] if a comfortable
environment is to be achieved for personnel aboard. Because of this requirement and the
weight limitations on any proposed space station, portions of the vehicle may have to be
rather flexible. Figure 1 shows a scheme involving two end chambers, Ro and R1, intended
to serve as living quarters and joined by an elastic structure S, an arrangement that
suggests the following question: What effect does vehicle elasticity have on attitude
stability? It is the purpose of the present work to deal with this question by studying a

FIG. 1. Schematic of a space station.

model that is simple enough to be amenable to rigorous, three-dimensional analysis, yet
sufficiently elaborate to permit one to obtain results that are meaningful from a practical
point of view.

* Parts II and III of this paper will appear in subsequent issues of this journal.
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The entire investigation can be understood best in the light ofearlier studies concerned
with attitude stability of rigid satellites. One problem of this sort was considered as long
ago as 1870 by Lagrange [2] in connection with his researches on the librations of the
Moon. As this is an Earth-pointing, rather than a rotating satellite, Lagrange's results
bear only indirectly on the problem at hand. However, his work demonstrated clearly
that a stability problem does, in fact, exist, and thus the stage was set for the solution of
more directly relevant problems. Of these, the ones most intimately related to the present
work are the problems of the rotating, symmetrical 13. 41 and unsymmetrical [5] satellite
in a circular orbit and that of the spinning satellite in an elliptic orbit [6], which collectively
lead to the conclusion that stability of a spinning satellite depends in a complex way on
spin rate, orbit eccentricity, and satellite inertia properties. The last of these items is of
particular interest. For, if the requirement vf rigidity is relaxed, inertia properties become
time-dependent; the mathematical structure of all dynamical analyses is altered substan
tially; and major modification of stability predictions may, therefore, be expected.

Studies concerned with deformable space vehicles were described by Thomson and
Reiter [7] in 1960 and by Meirovitch [8] in 1961, these efforts being directed primarily
toward an assessment of energy dissipation effects. In 1963, Paul [9] and Chobotov [10]
dealt with planar motions of deformable satellites, obtaining results that cannot be
regarded as conclusive for real satellites because, as has been shown for rigid satellites [11],
misleading results can be obtained when only planar, rather than three dimensional
motions are considered. Similarly, the recent work of Frueh and Miller [12,13], which
deals with elastic deformations, but contains no provisions for gross rigid body motions,
leaves many questions unanswered. A more realistic, if somewhat restrictive, approach
was taken by Austin [14], who analyzed a model comprised of two axially symmetric
rigid bodies connected in such a way as to permit only relative rotation about a common
axis of symmetry, and who concluded that effects of elasticity on gross rigid body motion
are of minor importance for such a model. In contrast, Reiter [15] showed that, at least
for Earth-pointing satellites, elasticity can have a profound effect on stability. In summary
then, it may be said that the relationship between elasticity and attitude stability of
satellites is not at present a closed subject.

The model selected for the present study is indicated in Fig. 1, where Ro and R 1 now
represent identical, although arbitrary, rigid bodies connected by an elastic structure that
is light in comparison with the end bodies. This model has twelve degrees of freedom.
Hf'wever, the system may be treated as if it possessed only nine degrees of freedom,
because the vehicle mass center P* may be presumed to be constrained to move on a
Keplarian orbit, provided (I) the only forces significantly affecting the motion of P*
are those exerted on the vehicle by the Earth E; i.e., gravitational forces of celestial bodies
other than the Earth are negligible; (2) E may be taken to be a spherically symmetric
body; i.e. it attracts any other body as though the entire mass M of E were concentrated
at the center; and (3) the distance from E to P* is sufficiently large in comparison with the
largest vehicle dimension so that changes in the attitude and relative position of vehicle
parts have negligible effect on the motion of P*. The validity of these approximations will
be assumed throughout the sequel.

The work that follows is divided into four sections, entitled "Dynamics," "Significance
of Gravitational Effects," "Instability," and"Applications." The first of these, Section 2,
contains a detailed description of the system to be analyzed, and the governing differential
equations are derived. Section 3 is devoted to a study of the significance of gravitational
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effects on rotating satellites, and it is shown that the influence of gravitational forces
becomes small when a vehicle rotates a sufficiently large number of times per orbit.
Section 4 contains a stability analysis of a rotating, deformable vehicle in a torque-free
state. This leads to "instability inequalities," expressed in terms of parameters reflecting
the inertia characteristics, the elastic properties, and the spin rate of the vehicle; and a
procedure for the use of these inequalities is described. This section also contains an
outline of a method for relating the deformable vehicle instabilities to the instabilities of
an "associated rigid body," defined as a rigid assembly which is inertially identical to the
undeformed elastic system. In Section 5, several special cases are discussed in order to
demonstrate the effects of elasticity, to check predictions made on the basis of the
instability inequalities of Section 4, to illustrate the meaning of stability, and to point out
possible applications, such as the feasibility of using cables for the connecting structure.

The principal conclusion reached is that the nature of the elastic connection appreciably
affects the attitude stability of the system. Indeed, it is shown that certain vehicle config
urations are predicted to be stable when analyzed as if rigid, but must be classed as unstable
when flexibility is taken into account. System parameters should, therefore, be chosen
with considerable care if instabilities are to be avoided. However, with a proper choice of
parameters, the elastic system attitude motion can be made to resemble that of the
"associated rigid body."

2. DYNAMICS

Description
In Fig. 2, N designates an inertial reference frame in which an attracting particle E is

fixed. Also fixed in N is an "orbit plane," in which the satellite's mass center P* is presumed
to move. With its origin at P*' a right-handed set of mutually perpendicular axes 01'
02' and 0 3 is oriented such that 0 1 is the extension of the line passing through E and
P*' and 0 3 is normal to the orbit plane. A reference frame in which these axes are fixed
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FIG. 2. Schematic representation of the satellite in orbit.
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(2.1 )

is designated 0, and this reference frame has a simple angular velocity of magnitude n
(possibly time-dependent) in reference frame N.

Ro and R. I identify two inertially identical, elastically connected, unsymmetrical rigid
bodies. The phrase "inertially identical" means that Ro and R I have (a) equal masses and
(b) identical inertia ellipsoids for their respective mass centers, Po and PI' Finally, Po
and PI are located with respect to P* by position vectors r 0 and r I> and Xii' X~, and X~

designate mutually perpendicular principal axes of inertia of R j for Pi.t

Kinematics

The orientation of the body Ro in reference frame 0 is described with attitude angles
1/11> 1/12' and 1/13' and the orientation of R I with respect to R o is specified with angles (}b (}z,

and (}3' In Fig. 3, three successive. right-handed rotations of amounts 1/1 I> I/Iz, and 1/13 are

FIG. 3. Attitude angles between coordinate axes fixed in 0 and Ro.

indicated. The sequence of rotations used to bring the axes X~, xg, and X~ from initial
alignment with 0 I' 0 z' and 0 3 to a general orientation is as follows. A rotation of amount
1/1 I is made about 0 I to bring XJt into coincidence with axis D j ; next, a rotation of amount
I/Iz about Dz leads to Ej ; and a rotation of amount 1/13 about E3 then brings XJ into final
position. In analogous manner, the angles (}I' (}z, and (}3' shown in Fig. 4, are established.

Unit vectors needed for subsequent dynamical relationships are now introduced. As
shown in Figs. 3 and 4, the unit vectors DI> Dz, and D 3 are directed along axes 0 1, 0z, and
0 3 , respectively; and aj, bj, and c j are aligned with the axes XiI' X~, and X~, respectively.

In order to abbreviate kinematical equations, let

cos I/Ij = cl/lj

sin I/Ij = sl/lj

cos (}j = c(}j

sin (}j = s(}j

t The index "i", either when it occurs as a superscript or when it is used as a subscript, may take on the values
oand l.

t The index "j" takes on the values I, 2, and 3.
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FIG. 4. Attitude angles between coordinate axes fixed in Ro and R,.

01 = ct/! zct/! 3aO - ct/! zsljJ3bO+ st/!zCo }

0z = (ct/! ISt/!3 + st/! 1St/! zct/!3)aO+ (cljJ ICt/! 3- st/! 1St/! zst/!3)bo- st/! Ict/! zCo

03 = (st/! 1St/! 3- ct/! Ist/! Zct/!3)aO+ (st/! ICt/! 3+ ct/! 1St/! zst/! 3)bo+cljJ1ct/! zCo
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(2.2)

(2.3)

ao = cOZc03al -cOzs03b l +SOzC I }

bo = (CO IS03+ SOISOZc03)al +(COIC03-S0IS0ZS03)bl-SOICOZCI .

Co = (SOIS03 -COISOZc03)al +(SOIC03 +cOlsOzs03)bl +cOICOZCI

It will be assumed that XJ is parallel to XJ and that X~ and X~ coincide when the
structure connecting Ro and R I is in the undeformed state. For this reason, the angle OJ
is not only an attitude angle but also an angle which describes the distortion of the connec
tion. As the analysis will be confined to deformations that are small in the usual sense of
linear structural theory, all nonlinear terms in OJ may, therefore, be dropped. Of course,
this means there is now a substantial difference between the attitude angles t/!j and OJ:
OJ is restricted to small values, whereas t/!j is not limited in size.

After linearization in OJ' equations (2.3) become

ao=al-03bl+OZCI }

bo = 03al +b l -OIC I

Co = -Oza l +Olbl +c I

and it follows from equations (2.2) and (2.4) that

01 = [(Ct/! ZCt/!3)-03(ct/!ZSt/!3)-OZ(st/!z)]a l

+[- 03(Ct/!ZCt/! 3) - (ct/! zst/! 3)+ 01(st/! z)]b l

+ [Oz(ct/!zct/! 3) + 01(Ct/! ZSt/!3) + (st/! z)]CI·

(2.4)

(2.5)
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The angular velocity of Ro in the inertial reference frame N is the sum of the angular
velocities of Ro in E j , E j in D j , D j in OJ' and OJ in N, and can be expressed as

(2.6)

(2.7)

where

WI =!/JICt/!2Ct/!3+!/J2St/!3+Q(St/!ISt/!3-Ct/!ISt/!2Ct/!3)}

W2 -!/J2Ct/!3-!/JICt/!2St/!3+Q(St/!ICt/!3+Ct/!ISt/!2St/!3) .

W3 = !/J3+!/JISt/!2+ Q(Ct/! ICt/!2)

With the small angle restriction again invoked on ()j' the angular velocity of R I relative
to Ro is

RO(J.)R 1 = ela l +e2b l +e3CI.

Finally, the angular velocity of R I in N is

(WI +81+W2()3- w3()2)a l
(2.6, 2.4, 2.8)

(2.8)

(2.9)

+(w2+82+W3()I-WI()3)bl

+(w3 +83+w182-W2()1)c1'

If the assumption is made that the mass of the connecting structure is negligible in
comparison with the masses of Ro and R I , the mass center P* of the satellite lies at the
midpoint of line segment Po - PI' Thus,

(2.1 0)

In Fig. 5, the relationship between the position vectors (ro, rtl and the elastic displacements
(PI' P2' P3) is presented graphically. If L is the distance between Po and PI when the

FIG. 5. Elastic displacements.
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connecting structure is undeformed, and Pi is the small elastic displacement of PI in the
direction of XJ when the connecting structure is deformed, the vectors (r0, r I) can be
expressed as

r l -ro = ![PIao+(L+Pz)bo +P3CO]'

(2.10)

The acceleration of Pj is given by

(2.11)

(2.12)

where the first component is the acceleration of P* in N and the second component is the
acceleration of Pi relative to P* in N. Ast

Ndzr.
NaPiIP • = --'

dt Z

(2.13)

it follows that

(2.14)
(2.13,2.10)

!([Pt +2WZP3 2W3PZ+WZP3-W3(L+pz)
(2.6,2.13,2.ll)

+wzwl(L + PZ)+W3WIP3 -(w~ +w~)ptJao

+ [pz + 2W3Pl - 2WIP3 +W3Pl - WIP3

+W3WZP3+WIWZPl-(W~+wf)(L+Pz)]bo

+ [P3 + 2w 1pz - 2WZPl +wI(L + PZ)-WZPI

+WIW3Pl +wzw3(L+ pz)-(wf +W~)P3]CO}'

(2.15)

Inertia forces and torques

Recalling that Xjl' X~, and X~ were defined to be principal axes of inertia of R j for
Pi' and letting A, B, and C denote the corresponding moments of inertia, one can express
the inertia dyadict for body R i as

Ii = Aajai+Bbjbi+Ccic j (2.16)

When the inertia forces for Ri are replaced with an inertia force Ff through Pj and an
inertia couple of torque Tf, these vectors are given by

Ff = - mNaP, (2.17)
and

Tf = NO)Ri . Ii x NroR, (NdNroRildt) . Ii

where m is the mass of R i . From equations (2.17) and (2.12),

(2.18)

(2.19)

t The symbol Nd( lIdt indicates that the differentiation with respect to time is to be performed in reference
frame N (see Kane [161).

t See Weatherburn 1171, p. 103 for a discussion of the inertia dyadic.
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If the inertia force is now expressed as

Ff = -mNaP*+Fftao+Ff2bo+Ff3CO

where

Ff t = - mNaP;/P* . ao

Ff2 = -mNaP;/P*.bo

Ff3 = - mNaP;/P* . Co

it follows from (2.21) and (2.14) that

FI - FI
OJ - - tj

The inertia torque for Rj, in component form, is

Tf = Tf taj+ Tf2bi+ Tf3Cj

where, for i = 0,

T~I (B-C)W2W3-Awl
(2.18,2.6)

T~2 (C - A)w3Wt - BW2

n3 (A-B)w tW2- CW3

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

and, for i = 1,

T{ I (B-C)[w382+w283+W2W3 +W2Wt02+(w~ -w~)Ot -WIW303]
(2.28,2.9)

-A(81 +wt +W203+w283-W302-w382)

Ti2 (C-A)[w t83+w38t +W3WI+W3W203+(wi-w~)02-W2WtOd
. (2.25)

-B(82+w2+W30 1 -w381 -Wt03-wt 83 )

T{3 (A -B)[w281 +w t 82 +WtW2 +W IW30t +(Wi-Wi)03 -W3W202]

- C(83 +W3 +WI02+w t 82 -W20t -w28t )

The first subscript in a symbol such as Ti2 identifies the body (in this case R I), and the
second subscript refers to direction (here bl)' This convention will also be adopted for
force and torque measure numbers introduced subsequently.

Contact forces and torques

When the connecting structure is in the deformed state, the system of contact forces
acting on body R j can be replaced with a single force Ff applied at Pi and a couple of
torque Tf. If the force and torque vectors are expressed as

(2.26)

and
(2.27)

and the measure numbers are assumed to be linear functions of the elastic displacements
(Pt, P2, P3) and elastic rotations (Ot, 82, 03), then the measure numbers can be presented in
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the following matrix form:

F~l

F~2

Fe
03

-[R]{x} (2.28)=
T~l

T~2

T~3

and

Fil

Fi2

Fi3
-[S]{x) (2.29)

Til

Ti2

Ti3

where the column matrix {x} is defined as

Xl PI

X2 P2

{X}
X3 P3

(2.30)
X4 (}l

Xs (}2

X6 (}3

and where[R] and [S] are square, 6 x 6, matrices with constant elements Rkl and Skl.t
The matrix [S], called the "stiffness matrix", has two properties of particular interest.

The element SkI of [S] is equal to the magnitude of the moment or force needed to constrain
the X k movement of R I due to a unit displacement or rotation x, of R I ; and, when the
linear elastic theory of structures is used, the stiffness matrix is symmetric, i.e.,

{2.31)

For further discussion of the stiffness matrix, see Gere and Weaver [18].
When the equilibrium of the connecting structure is considered, the forces F~ and

Fi and the couples of torques T~ and Ti are seen to constitute a zero system. Consequently,

F~+Fi = 0 (2.32)

and
(2.33)

t The indices "k" and "/" take on the values, 1, ... ,6.
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From equations (2.26) and (2.32), it follows that

(2.34)

(2.35)

When substitutions from equations (2.11), (2.26), and (2.27) are made into (2.33) and all
nonlinear terms in Xk are dropped, the following relationships are obtained:

T~1 = - TL -LF~3}
T~2 = - T~2

C C CT 03 = -T13 +LF II

(Here terms such as 83 T~2 have been dropped because the product of 83 and the quantity
T~2' which is linear in x k ' forms a quadratic term in xd

Equations (2.34) and (2.35) are contained in the single matrix equation

F~1 F~1

F~2 F~2

F~3
= [T]

F~3

T~1 T~1
(2.36)

T~2 T~'2

T~3 T~3

where

[T] =

-1 0 0 0 0 0

o -1 0 0 0 0

o 0 -I 0 0 0

o 0 -L -I 0 0

o 0 0 0 -1 0

L 0 0 0 0-1

Substitution from equations (2.28), (2.29) into (2.36) gives

[RJ{x] = [T][S]{x]

from which it follows that

[R] = [T][SJ

(2.37)

(2.38)

(2.39)

Because of the dependence of [R] on [S], as shown in equation (2.39), it is necessary
to find only the stiffness matrix [S] for a given connecting structure. Consequently, in the
final form of the analysis, the elastic and geometric properties of the structure will be
completely characterized by [S].

Gravitational forces and torques
The system of gravitational forces exerted on the particles of R i by E can be replaced

with a force Fy applied at Pi together with a couple of torque Ty. Approximate expressions
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(2.40)

for F? and T?, valid when the magnitude of the vector R0 1 +r j , i.e., the distance from
E to Pi' is sufficiently large in comparison with the largest dimension of R j , can be obtained
by expanding exact expressions for F? and T? in series of ascending powers of small
quantities and then retaining only leading terms. Initially, this leads to (see Nidey [19])

FG = -GMm(Ro l +r j )

I [(Ro 1 + r;)2p/2

and

(2.41)

(2.42)

where G is the universal gravitational constant; M and m are the masses of E and R i ,

respectively; R is the distance from E to P* ; and Ii is the inertia dyadic of R j for Pi (see
(2.16)). These expressions then reduce to

G GMm{[ .3 L l .L }F i = -Jil 1+( -1)'2Ro1 . bOJ 0 1-( -1)'2Rbo

and

(2.43)

(2.44)

when second and higher degree terms in L/R and all terms containing the small elastic
displacements (P1' P2' P3) are dropped from their series expansions.

To check these expressions one may set the deformations Xl' ... , X 6 equal to zero, in
which case F? and T? should lead to the corresponding vectors (F~, T~) for the "associated
rigid body" designated R*. Now, F~ and T~ are given by

FG __ 2GMm
* - R 2 0 1

and

(2.45)

where

1* = 113030 +12bobo +13c Oc O (2.46)

and 1I' 12 , and 13, the principal moments of inertia of R* for P*, can be expressed as

11 = 2(A +mU/4)

12 = 2B (2.47)

13 = 2(C+mL2 /4)

As the relationship between inertia dyadics Ii and 1* is

mL 2

1* 210 +-2-(3030 +CoCo) (2.48)
(2.46,2.47,2.16)
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(2.49)

Equation (2.45) is equivalent to

G 3GM [mL
2

]T* == Ji301 x 210 +T(aoao+ coco) .n l

The question is then whether or not the following equalities hold when the connecting
structure is undeformed :

As for the first of these,

I

L (TY+f;xFY) = T~
i=O

G G GMm rG
Fo+FI = -2~01 = 1'*

(2.42) (2.44)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

Hence equation (2.50) is satisfied. After substitutions from equations (2.42) and (2.43), and
with r1 and - f0 set equal to L/2bo•

~ G G GM{ ~ I 2 }i~O (T; +f; x F;) = 3 R 3 ;~o (01 X Ii' od+"2mL (°1, bo)bo x 01 .

When the order ofbo and 01 in the cross product bo x 01 is reversed, and the inertia dyadic
11 is recognized as being identical with ~ for the undeformed assembly. equation (2.53)
can be rewritten as

~ G G GM { I 2 1;:-0 (T; +rixF;) = 3-RTo l x 210 -"2(mL )boboJ .Ot·

By introducing the idemfactor I (see 117J. p. 87) expressed as

one can see that

°1 x(l-bobo)·ol = 0t x(aoao+coco)·ol
(2.55)

But, as the idemfactor can also be expressed as

I = 0101 +0202 +0303

which shows that
0 1 xI.01 = 0

(2.57)

it follows from equations (2.56) and (2.58) that

°1 x (- bobo) . 01 = 01 X (aoao+ coco) . 01

Therefore, from equations (2.54) and (2.59)

~ G G GM f I I 2 ( \ TG£...,(T;+f;xF;)=3-30IXl2o+"2(mL)aoao+cocO)J·01 = *
. 0 R
1= (2.49)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)



Dynamics of an elastic satellite 345

(2.61)

and equation (2.51) is seen to be satisfied. Thus, it may be concluded that equations (2.42)
and (2.43) are compatible with the corresponding rigid body equations, equations (2.44)
and (2.45).

When the vectors Ff+m(GMjR2)n t and Tf are expressed as

G GM G G G
F; +m R2 °1 = FilaO+Fi2bo+Fi3CO

and

(2.62)

(2.65)

(2.64)

(2.63)

(2.65)
cont.

the measure numbers found by using equations (2.2), (2.5), (2.16), (2.42), and (2.43) are

G G 3 (GM) 2FOl = -Fll = 2 R3 mL(c t/!2 Sl/J3Cl/!3)

G G I (GM) 2 2
F02 == - F 12 = 2 R3 . mL( 1- 3c l/! 2S t/! 3l

G G 3 (GM)F03 = -F l3 = 2 R3 mL(cl/J2sl/J2St/!3)

Tg i = 3(B- C)(~H (1-~ ~Cl/!2St/!3) (Cl/!2Sl/!2Sl/J3l+ 2~Sl/!2}

Tg2 = 3(C - A) (~){ ( I -~ ~cl/J2St/! 3) (-Cl/J2St/!2Ct/! 3)}

G (GM){ ( 5L ) 2 L}T 03 =3(A-B) R3 1-2R cl/!2sl/J3 (CIjl2Cl/J3Sl/J3)+2Rcl/!2Cl/J3

T11 = 3(B-C) (c::){( 1+~~Cl/!2St/!3)(-tll(S2l/!2-C2t/J2S2t/!3)

+82c
2l/! 2Sl/J3Ct/J 3 + 03cl/J 2St/J 2Cl/! 3+ Ct/J2SIP2St/!3\

+ 2~( - (}2Ct/!2Cl/!3 2(}tCt/!2st/!3 -Sl/!2)}

G (GM) f( 5 L ) 2 2 2Tn = 3(C-A) R3 ll+2R cl/!2st/!3 l+(J2(S l/J2- C l/!2C t/!3)

+03Cl/!2 Slj! 2SW3 - tl[c2l/J 2St/! 3Clj! 3- CW 2St/! 2CW3)

+.L (8 Ict/!2Cl/! 3- 03SW2)}
2R

G (GM){ ( 5 L ) 2 2 2 2T I3 = 3(A-B) R3 1+2RcW2st/!3 (-B3(c l/J2S W3- C W2C t/!3)

- 0tcW 2St/! 2CW3 - fJ 2cW2St/! 2St/!3+c2l/!2SW3CI/J 31

+ 2~(fJ2St{t2 +2fJ3cl/J2sW3 -CI/J2Ct{t3)}.
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Equations of motion

In accordance with D'Alembert's Principle, the resultant of all contact-, inertia-,
and gravitational forces acting on R i , and the moment of these forces about Pi' may be set
equal to zero. Hence

F[ +Ff+Ff = 0

T[+Tf+Tf = O.

Substitutions from equations (2.20), (2.26), and (2.61) into (2.66) lead to

(F[l + Ffl + Fftlao+ (F[z + Ff; + Ff;)bo+ (F[3 + F~~ + F~)co

-m(~~nl +NaP.) = O.

But, Newton's laws of motion require that

(2mta P
' = Fg +F?

Hence

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

Thus, as a consequence of equation (2.70), equation (2.68) simplifies and yields the six
scalar equations

i = 0, 1, j = 1,2,3 (2.71)

However, three of these equations, those for i = 0, are linearly dependent on the remainder,
because

F~j = -FL
(2.22)

Fgj = -FL
(2.34)

Fgj = -F?j
(2.63)

Hence, as equation (2.67) also yields six scalar equations, nine independent equations of
motion are available, and these are

and

j = 1,2,3 (2.72)

i = 0, 1, j = 1,2,3 (2.73)

By substitutions from equations (2.15) and (2.21) into equations (2.72) and equations
(2.24), (2.25), and (2.36) into (2.73), the equations of motion with the inertia terms written
out and dependent contact quantities eliminated become

(2.74)
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m[.. 2 . . 2' . (L) ( 2+ 2)"2 P3 + WtP2- W2Pt- W2Pt+Wt +P2+W3WtPt-P3Wt W2

+W3W2(L+P2)]-F~3-FY3 = 0

AWt -(B-C)W20h+(T~t +LF~3)-Tgt = 0

BW2 -(C - A)W3Wt + T~2 - Tg2 = 0

CW3-(A-B)WtW2+(T~3-LF~t)-Tg3 = 0

A(Ot +Wt +W203 +W203 -W302-W3(2)

-(B- C)(W302 +W203 +W2W3 +W2Wt 02-W~Ot +W~Ot -Wt(303)

- T~t - TYt = 0
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(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

B(82+ cih+ W30 t +W30t-Wt03-Wt(3)

- (C - A)(wt03+ W30t + W3Wt + W3W203 - W~02 +Wi02 - W2Wt 0t) (2.81)

-T~2-TY2 = 0

Q03 +w3+Wt02+Wt02-W20t -w20 t )

-(A - B)(W20t +Wt02 +WtW2 +WtW30t -Wi03 +W~03 -U)3W202) (2.82)

- T~3 - TY3 = o.
The kinematical relationships that describe the attitude motion of body Ro in reference

frame N furnish three additional differential equations. The simultaneous solution of
equations (2.7) for ,hi = L 2, 3, yields

. 1
!/Jt = ----:z-[Wt C!/J3- W 2S!/J3]+fk!/Jt tan!/J2 (2.83)

C'l'2

(2.84)

(2.85)

When equations (2.74H2.85) are solved simultaneously for Pj' Wj, OJ' and l{Jj' and all
nonlinear terms in the variables Pj' OJ and their time derivatives are dropped, the resulting
differential equations of motion becomet (when normalized by (l) letting (jj be a quantity
having the dimensions of angular velocity and (2) defining T as

T = rot (2.86)

t A dual equation numbering system is used for equations (2.87)-(2.95). The primes on (2.87)'-{2.95)' are to
indicate that the gravitational terms, i.e. terms with a superscript G. are to be dropped.
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and, furthermore, using primes to denote differentiation with respect to r)

" 2 2 () ,Pl=W2+ W3Pl (1_k)W 1W2 1+ P2 _(1+k)WIW3P3+ 2
W3P2

L (02 L 3 052 L 2 (02 L 05 L

W2 P3 2 c 1 c c
-2-=- -L+ L-2FII-C-2(TI3-LFll)

W m W W

_ 2W3 P~ _2_Fc _2_FG __l_TG PI
- L+ L-2 12+ L-2 12 C-2 03LW m W m W W

1 G ( pz) 1 G PI---Toil +- +--T 2-
Aw2 L Bw 2 0 L

(2.87)

(2.87)'

(2.88)

(2.88)'

(2.89)

(2.89)'

(2.90)

(2.90)'

(2.91)

(2.91 )'

(2.92)

(2.92)'

(2.93)

(2.93)'
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(2.94)

(2.94)

(2.95)

(2.95)

(2.96)

(2.97)

(2.98)

where

and

B-C
k1 =--

A

C-A
k2 =--

B

A-B
k3 = -c =

F;'l

F;'2

F~3

T~l

(2.99)

(2.101 )

(2.102)

(2.100)

o2RO+RO

T~2

T~3

If P* moves on an elliptic orbit (see Fig. 6) having an eccentricity e and major semi
diameter C4 the velocity and acceleration of P* in N are

NVP
• = Rn l + ROn2 }

NaP. = (k-R02 )n 1 +(2RO+RO)n2

Substitution from equation (2.100) into equation (2.70) now yields

k-R02 +GMR 2 = 0
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0, ",
""',:;;p..:-.__~

°2

If
"2

20.

R

FIG. 6. Elliptic orbit.

It follows from equation (2.102) that

However, in accordance with Kepler's Law of Areas

!R 2n = nab
T

(2.103)

(2.104)

where T is the period of the motion and b is the minor semidiameter of the ellipse. From
the geometry of the ellipse,

b = a(l-e2 )!

Therefore, from equations (2.104) and (2.105), it follows that

R 2n = 2na2(l- e2)!
T

and, if n, the "mean motion" is defined as

n = 2n/T

then equation (2.106) becomes

At apogee or perigee (i.e. R = 0), the radius of curvature Po of the ellipse is

while the acceleration of P* in N is given by

(2.105)

(2.106)

(2.107)

(2.108)

(2.109)

(2.100)
(2.110)

Now, from equation (2.70),

(2.111)
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Thus, from equations (2.110) and (2.111)

GM
Po

n2a4(1- 62)/Po
(2.108)

(2.109)
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(2.112)

(2.113)

Now, when equation (2.108) is used to eliminate a from equation (2.101), and (is defined as

R
( =-

a

the governing orbital equations become [after normalization by means of (2.86)],

(2.114)

and

(2.115)

The nine gravitational quantities FYj and T3 in equations (2.87H2.95) are then given by
equations (2.63H2.65) together with

GM/R 3 n2C 3 (2.116)
(2.112)

and

L/R = (L/a)(-l (2.117)

The problem of a flexible vehicle in orbit has now been reduced to a set of fourteen
differential equations, equations (2.87H2.98), (2.114), and (2.115), in the fourteen variables
p/L, w/m, OJ' r/lj' (, a/m, j = 1,2,3. The equations are nonlinear in r/lj and wim, but
linear in p/L and OJ; hence they are valid for large attitude motions accompanied by small
elastic deformations.

The analysis and discussions that follow deal with the nature of the solutions of these
equations.
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Resume-Cette etude concerne la determination des effets de deformation elastique sur la stabilite d'un satellite
en rotation compose de deux corps rigides elastiquement connectes, inertement identiques et antisymmetriques.
Suivant une analyse de stabilite, des exemples sont presentes qui demontrent les effets de l'elasticite sur la motion
d'un vehicule, pour illustrer diffhents types d'instabilite et pour souligner que la performance du systeme peut
etre hautement sensible au changement de dimension et de constante de spin.

Zusammenfassung--Diese Untersuchung behandelt die Bestimmung des Einflusses der elastischen Verformung
auf die Stabilitat eines sich drehenden Satelliten der aus zwei unsymmetrischen Festkorpern besteht die elastisch
miteinander verbunden und tragheitsmassig identisch miteinander sind. Nach der Stabilitats-Analyse werden
Beispiele gegeben die zeigen welchen Einfluss Elastizitat auf die Fahrzeugbewegung ausiibut. ferner werden
verschiedene Arten der Unstetigkeit gezeigt. schliesslich wird erwahnt. dass das System sehr von Anderungen der
Ausmasse und der Drehgeschwindigkeit abhangt.

A6cTpaKT-3TO I1CCJle,UOBaHlle 3aHIIMaeTC51 onpe,UeJleHlleM 3<p<peKToB 3JlaCTII'ieCKOH ,Ue<popMal..lllll I1a
YCTOH'iI1BOCTb BpamalOlI..lerOC51 CaTeJlIITa, COCTaBJleHHO 10 111 ,UByX 3JlaCTI1'iecKI1 CB513aHHblx, IfHCpl..ll1aJlbHO
TOJK,UCCTBeHHblx HCCI1MMCTPI1'iCCKIIX TBepLl,bIX TeJl. CJle,UYll aHaJllllY YCTOH'iI1BOCTI1, ,UalOTCll npl1MCpbl
,UeMOHCTpal..ll1l1 3<p<peKTOB 3JlaCTII'iHOCTII Ha ilBII)((CHlle CpC,UCTBa nepe,UBII)((eHIISl (JlCTaTCJlbHorO annapaTa),
,UJlll nORCHCHII51 HCyCTOH'iIlBOCTII palJlIl'iHbIX Blf,UOB II ,UJlll YKacaHIIR Ha TO, 'iTO pa60Ta CIICTCMbl MO)((CT
6blTh O'iCHb 'iYBCTBIITCJlbHa K 1I3MCHCHIIllM palMcpa II CKOPOCTII Bpall..lCHl1R.


